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Matemáticas y EstadísticaThe Right Setting of the Quaternion
Calculus

El cálculo cuaterniónico, como debe ser

Solanilla LeonardoI; Hayek Hassam y Rivera Javier

Abstract. Despite the self-evident resemblance among real, complex and
quaternionic analysis, it is usual to persist in pointing out to their distin-
guished characteristics. It is our aim in this paper, by contrast, to set forth a
natural (i.e. canonical) and rather comprehensive account of the quaternion
calculus. Accordingly, we show that a proper notion of quaternionic deriva-
tive leads to the fundamental integral theorem which generalizes straight-
forwardly the better-known complex and real cases.

Key words: Quaternion and other division algebras, exterior differential
systems, harmonic functions.

Resumen. A pesar del parecido entre los cálculos real, complejo y
cuaterniónico, se suele insistir en sus diferencias. En este art́ıculo, por el
contrario, queremos realizar una presentación canónica del cálculo cuaternió-
nico. Aśı pues, la noción correcta de derivada cuaterniónica conduce natu-
ralmente al teorema integral fundamental que generaliza lo que se conoce en
los cálculos real y complejo.

Palabras clave: Cuaterniones y otras álgebra con división, sistemas dife-
renciales exteriores, funciones armónicas.

1 INTRODUCTION

Even though the works of Fueter and his school proclaim a common construction
for both quaternion and complex calculus, a comprehensive polished account of
the subject has yet to come. A handful of well-known papers ((Deavours, 1973),
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(Sudbery, 1979) and even the amazing original (Fueter, 1935)) must suppose the
continuity of the derivative in order to reach quickly Cauchy-Fueter theorem.
On the contrary, here we follow closely the modern theory of complex functions
(cf. Levinson & Redheffer (1970), Remmert (1991)) and discard any redundant
assumption from our exposition. Differential forms provide the appropriate lan-
guage to depict quaternion infinitesimal calculus, owing to the difficulties arising
from the four-dimensional character of the space. In a way, we may still say “wir
wollen am Beispiel der Potentialfunktionen in einem Linearsystem den Zusam-
menhang mit dem äußern Differentialcalcul aufzeigen” (Haefeli, 1947, p. 382).

The elements of the algebra H of real quaternions are denoted by h = t+ix+jy+
kz or h = R(h)+I(h). R(h) = t is called the real part of h and I(h) = ix+jy+kz
is termed its imaginary part. Products of quaternions are often easily performed
by the rule

hh′ = R(h)R(h′) − I(h) · I(h′) + R(h)I(h′) + R(h′)I(h) + I(h) × I(h′).

We make use of the notations h/h′ = h(h′)−1 and h′ \ h = (h′)−1h. For each
h = R(h) + I(h) ∈ H, h = R(h) − I(h) ∈ H is the conjugate of h. The modulus
|h| =

√
hh measures the euclidean length of h. We assume familiarity with the

most prominent properties of the skew field of real quaternions. In particular,
any ingenuous attempt to mimic complex calculus is inconsequential, cf. (Subery,
1979) and (Hayek & Rivera, 2010).

Proposition 1.1. Suppose U ⊂ H is a domain and the function f : U → H is
such that limh→0(f(a + h) − f(a))/h exists for all a ∈ U . Then, f is right-affine
in U . In other words, f(h) = mh + b, for some constants m, b ∈ H.

The correct notion of quaternionic differential relies au contraire upon the fol-
lowing basic geometric facts.

Proposition 1.2. Let h1, h2 and h3 be quaternions.

1. A(h1, h2) = 1
4(h1h2 − h2h1) is a quaternion that is perpendicular to I(h1)

and I(h2). Also, |A(h1, h2)| equals the area of the triangle having edges
I(h1) and I(h2).

2. V(h1, h2, h3) = 1
4(h3h1h2−h2h1h3) is a quaternion which is normal to h1, h2

and h3. Its modulus |V(h1, h2, h3)| gives the volume of the tetrahedron whose
edges are these three quaternions.

Our treatment of topology and integration is truly naive. Nevertheless, there
should be no difficulty to restate our claims in a more general background.

In section 1, we propose and motivate a notion of holomorphic function. It leads
to the necessity of the Cauchy-Fueter equations. The notion proves to be fitting
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in section 2, where the fundamental integral theorem is established via Goursat’s
dissection. Section 3 is devoted to the integral formula and its principal conse-
quences. They comprise the continuity of the derivative, Liouville-Fueter theorem
and a kind of Morera’s holomorphy condition.

2 DIFFERENTIABILITY AND HOLOMORPHY

Let f : U → H be a function defined on a domain U ⊆ H. Since we are dealing
with the behavior of f at point a in a 3-submanifold of U , we shall make use of
the set H3 of all ordered triples (h1, h2, h3) of linearly independent quaternions
such that a+h1, a+h2, a+h3 ∈ U . The “3-increment” of f will be given by map
Df : H3 → H,

Df(h1, h2, h3) =(f(a + h3) − f(a))A(h1, h2)+
(f(a + h1) − f(a))A(h2, h3) + (f(a + h2) − f(a))A(h3, h1).

Definition 2.1. A function f : U → H is said to be right-differentiable at a ∈ U
if the limit

lim
(h1,h2,h3)→(0,0,0)

Df(h1, h2, h3)/V(h1, h2, h3) = f ′(a)

exists. When this is the case, we speak of f ′(a) as the right derivative of f at a.

Equivalently, right-differentiability is a type of right-linear approximation. In fact,
f is right-differentiable at a if and only if there is a quaternion f ′(a) such that
Df(h1, h2, h3) = f ′(a)V(h1, h2, h3)+e(h1, h2, h3)V(h1, h2, h3), where e : H3 → H
is a continuous function satisfying e(0, 0, 0) = 0. Then, the right-differentiability
of f at a point a entails the continuity-evoking condition Df(h1, h2, h3) → 0
as (h1, h2, h3) → (0, 0, 0). By the way, f is R4-differentiable and so, continuous.
Definition 2.1 also produces at once the expected differentiation rules. If f, g :
U → H are right-differentiable at a ∈ U , then (f + g)′(a) = f ′(a) + g′(a) and
(cf)′(a) = cf ′(a), for all c ∈ H.

Our definition holds for any (h1, h2, h3) ∈ H3 approaching (0, 0, 0). In particu-
lar, f ′(a) = lim(t,x,y)→(0,0,0) Df(t, ix, jy)/V(t, ix, jy) = −∂f/∂t(a). Also, f ′(a) is
equal to lim(x,y,z)→(0,0,0) Df(ix, jy, kz)/V(ix, jy, kz) = i∂f/∂x(a)+ j∂f/∂y(a)+
k∂f/∂z(a). Let � = ∂

∂t + i ∂
∂x + j ∂

∂y + k ∂
∂z . If f is right-differentiable at a, then

f is R4-differentiable at a and f�(a) = 0. As expected, the converse is not true.
However, if f = p+ iq+ jr+ks is R4-differentiable at a, the real-valued functions
p, q, r, s are continuously differentiable in a neighborhood of a and f�(a) = 0,
then f is right-differentiable at a. With the aid of the vector calculus operator
∇ = ( ∂

∂x , ∂
∂y , ∂

∂z ), the right Cauchy-Fueter differential system f� = 0 is written

∂

∂t
R(f) = I(f) · ∇; R(f)∇ = − ∂

∂t
I(f) − I(f) ×∇. (1)
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Pretty much the same as in the complex case, these equations imply that the
components of any smooth enough right-differentiable function are harmonic.

Proposition 2.2. If f : U → H, f = p + iq + jr + ks, is a right-differentiable
function and p, q, r, s : U → R are twice continuously differentiable in U , then
∆p = ∆q = ∆r = ∆s = 0 in U , where ∆ = ∂

∂t2
+ ∂

∂x2 + ∂
∂y2 + ∂

∂z2 .

Proof. On the one hand, (R(f)∇) · ∇ =

(
− ∂

∂t
I(f) − I(f) ×∇

)
· ∇ = − ∂

∂t
(I(f) · ∇) − (I(f) ×∇) · ∇ = −∂2p

∂2t
.

Hence, ∆p = 0. On the other hand, ∂2I(f)/∂2t =

− ∂

∂t
(p∇)− ∂

∂t
(I(f)×∇) = −

(∂p

∂t

)
∇−I(f)(∇·∇)+(I(f) ·∇)∇ = −I(f)(∇·∇).

Therefore, ∆q = ∆r = ∆s = 0.

As a matter of fact, the suitable notion for the quaternion calculus is the following.

Definition 2.3. A function f : U → H is called right-holomorphic in the domain
U if f is right-differentiable at every point of U .

Similarly, by setting fD(h1, h2, h3) = A(h1, h2)(f(a + h3) − f(a)) + A(h2, h3)
(f(a+h1)−f(a))+A(h3, h1)(f(a+h2)−f(a)), f is said left-differentiable at a if
lim(h1,h2,h3)→(0,0,0) V(h1, h2, h3)\fD(h1, h2, h3) exists. Also, f is left holomorphic
in U if it is left-differentiable at every a ∈ U .

Examples 2.4. If u(x, y) + iv(x, y) is a complex-valued holomorphic function
of a complex variable defined in a complex domain, î = I(h)/|I(h)| and f(h) =
u(�(h), |I(h)|) + îv(�(h), |I(h)|), then ∆f(h) is right- and left- holomorphic in
its domain of definition. In addition, ∆∆f = 0. It is not hard to see that

fF(h) := ∆f(h) =
2

|I(h)|
î
(∂f

∂t
− v(�(h), |I(h)|)

|I(h)|

)
.

This important result, which provides a whole bunch of non-trivial examples, is
due to (Fueter, 1935) himself.

If we assume momentarily that f ′ is continuous about a, we shall be able to justify
its definition. In a 3-submanifold V ⊂ U containing a, we consider any simply
connected differentiable 3-submanifold M ⊂ V of U with a ∈ M . We may also
assume that the boundary ∂M ⊂ V is a smooth 2-submanifold of U . Quaternionic
differential forms are built upon familiar real differential forms. A quaternionic
l-form, l ∈ {0, 1, 2, 3}, is in truth a combination α1 + iα2 + jα3 + kα4 of four real

Revista Tumbaga 2012 | 7 | 149-159
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l-forms αi, i ∈ {1, 2, 3, 4}. Their wedge product is performed as the product of
two quaternions by using the wedge product of real forms. The exterior derivative
is computed by taking the quaternions 1, i, j, k as constants. Some of these forms
are particularly helpful to describe quaternion geometry and so, to elucidate the
meaning of the quaternionic right derivative. A 0-form is just an R4-differentiable
function, say f = p + iq + jr + ks. Hence,

df = dp + idq + jdr + kds =
∂f

∂t
dt +

∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

is a 1-form and, when f is the identity function, it provides the quaternionic line
element dh = dt + idx + jdy + kdz. We have that dh(h1) = dt(h1) + idx(h1) +
jdy(h1) + kdz(h1) = h1. The striking area element δh = dh ∧ dh = idy ∧ dz +
jdz ∧ dx + kdx∧ dy and fδh are 2-forms. Clearly, δh(h1, h2) = idy ∧ dz(h1, h2) +
jdz∧dx(h1, h2)+kdx∧dy(h1, h2) = A(h1, h2). The quaternionic volume element
dh = dx ∧ dy ∧ dz − idt ∧ dy ∧ dz − jdt ∧ dz ∧ dx − kdt ∧ dx ∧ dy is a 3-form on
M . Besides, dh(h1, h2, h3) = V(h1, h2, h3). The 3-form df ∧ δh is also relevant. It
is indeed the “limit” of Df , for

df ∧ δh =
(∂f

∂t
dt

)
∧ δh +

(∂f

∂x
dx

)
∧ i(dy ∧ dz)

+
(∂f

∂y
dy

)
∧ j(dz ∧ dx) +

(∂f

∂z
dz

)
∧ k(dx ∧ dy).

In addition,

df ∧ δh = −
(∂q

∂t
dt +

∂q

∂x
dx

)
∧ dy ∧ dz −

(∂r

∂t
dt +

∂r

∂y
dy

)
∧ dz ∧ dx

−
(∂s

∂t
dt +

∂s

∂z
dz

)
dx ∧ dy + i

((∂p

∂t
dt +

∂p

∂x
dx

)
dy ∧ dz

−
(∂s

∂t
dt +

∂s

∂y
dy

)
dz ∧ dx +

(∂r

∂t
dt +

∂r

∂z
dz

)
dx ∧ dy

)

+ j
((∂s

∂t
dt +

∂s

∂x
dx

)
dy ∧ dz +

(∂p

∂t
dt +

∂p

∂y
dy

)
dz ∧ dx

−
(∂q

∂t
dt +

∂q

∂z
dz

)
dx ∧ dy

)
+ k

(
−

(∂r

∂t
dt +

∂r

∂x
dx

)
dy ∧ dz

+
(∂q

∂t
dt +

∂q

∂y
dy

)
dz ∧ dx +

(∂p

∂t
dt +

∂p

∂z
dz

)
dx ∧ dy

)

= − (I(f) · ∇)R(dh) +
∂

∂t
I(f) · I(dh)

− (I(f) · ∇)I(dh) − R(dh)
∂

∂t
I(f) − ∂

∂t
I(f) × I(dh).

Consequently, by virtue of Stokes’ theorem and the mean value theorem for in-
tegrals,

lim
M→a

∫
∂M f δh∫

M dh
= lim

M→a

∫
M df ∧ δh∫

M dh
= lim

M→a

∫
M f ′ dh∫
M dh

= f ′(a),
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where, as a result of (1), we must have

f ′ = −I(f) · ∇ − ∂I(f)/∂t = −∂R(f)/∂t + R(f)∇ + I(f) ×∇. (2)

The limit indicates that M is collapsing to point a, i.e., any (h1, h2, h3) tends to
(0, 0, 0). To sum up, f is right-differentiable at a if d(fδh) = df ∧δh = f ′dh about
a. Just like with complex-differentiable functions, the continuity of f ′ is entirely
adequate for the theory, but it happens to be redundant. By the way, (2) yields
immediately the product-rule

(fg)′ = f ′g + fg′ − 2I(g) · (I(f) ×∇).

So, it is also possible to establish a quotient-rule.

3 THE CAUCHY-FUETER INTEGRAL THEOREM

A function F : U → H is a right primitive of a continuous function f : U → H in
U if F is right-differentiable in U and F ′ = f . It is clear that, if f has a primitive
F in U and M is a 3-submanifold of U with boundary ∂M , then

∫

M
fdh =

∫

M
F ′dh =

∫

M
dF ∧ δh =

∫

∂M
Fδh.

Therefore, if M is closed (i.e., compact with no boundary),
∫
M fdh = 0.

Since we do not have the continuity of f ′, Stokes’ theorem does not lead to the
fundamental integral theorem right away. Luckily, we can turn to a clever well-
known device, namely Goursat’s dissection.

Lemma 3.1. If f : U → H is right-holomorphic in the domain U , then, for the
boundary ∂T of every closed 4-pentahedron T ⊂ U , we have

∫

∂T
fdh = 0.

Proof. The boundary ∂T is composed of five 3-tetrahedra. We divide T à la
Goursat into sixteen smaller congruent 4-pentahedra Ti. Then,

∫

∂T
fdh =

16∑
i=1

∫

∂Ti

fdh.

From among the integrals on the right-hand side, we choose one with the largest
modulus and denote the associated 4-pentahedron by T1. Thus,

∣∣∣∣
∫

∂T
fdh

∣∣∣∣ ≤ 16
∣∣∣∣
∫

∂T1

fdh

∣∣∣∣.

Revista Tumbaga 2012 | 7 | 149-159
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Proceeding with T1 just as we have done with T , we find a 4-pentahedron T2 that
satisfies

∣∣∫
∂T fdh

∣∣ ≤ 162
∣∣∫

∂T2
fdh

∣∣. Continuing in this way yields a decreasing
sequence of compact 4-pentahedra T ⊃ T1 ⊃ T2 ⊃ · · · such that

∣∣∣∣
∫

∂T
fdh

∣∣∣∣ ≤ 16n

∣∣∣∣
∫

∂Tn

fdh

∣∣∣∣, n ∈ N. (3)

As a result of the nested interval principle, there is a unique a ∈ T such that
∩∞

i=1Ti = {a}. Since f is R4-differentiable at a, it holds that f(h) = f(a) +
Df(a)(h−a)+e(h)(h−a), where Df(a) denotes the linear Jacobian map and e(h)
is a continuous function such that e(h) = 0. Now,

∫
∂Tn

f(a) dh =
∫
∂Tn

Df(a)(h−
a) dh = 0 because the integrands possess primitives. It follows that

∫

∂Tn

fdh =
∫

∂Tn

e(h)(h − a)dh, n ∈ N.

Since e is continuous, max{|e(h)| : h ∈ ∂Tn} ≤ m, for some m > 0. From the
standard estimate, we get the inequality

∣∣∣∣
∫

∂Tn

fdh

∣∣∣∣ ≤
mc

16n
,

where c is a constant. Combining this with (3) and noting that m → 0 as n → ∞,
we find that

∫
∂T fdh vanishes.

Corollary 3.2. Let U ⊂ H be a domain and c ∈ U . Let also f, g : U → H be
continuous in U . If f is right-holomorphic in U \ {c} and g is left-holomorphic
in U \ {c}, then

∫
∂T fdhg = 0 for every closed 4-pentahedron T ⊂ U which has a

vertex at c.

Under proper assumptions on the topology of U , it is possible to establish the
fundamental integral theorem.

Theorem 3.3 (Cauchy-Fueter). Let U be a star domain and let f : U → H be
right-holomorphic in U . Then,

∫

M
f(h) dh = 0

for any 3-dimensional closed (smooth) subset M of U .

Proof. Let o be a center of U . First off, with the aid of the 1-form dh = −dt −
i
3dx − j

3dy − k
3dz, we define F : U → H by

F (h) =
∫ h

o
f(η)dη.
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Then, dF = fdh and dF ∧ δh = fdh ∧ δh = fdh. Now, if a ∈ U and |h1|, |h2|
and |h3| are sufficiently small, then o, a, a + h1, a + h2, a + h3 are the vertices
of a 4-pentahedron T lying entirely in U . Let τ1 = [o, a, a + h1, a + h2], τ2 =
[o, a + h2, a + h1, a + h3], τ3 = [o, a + h3, a + h1, a], τ4 = [o, a, a + h2, a + h3] and
τ5 = [a, a + h1, a + h2, a + h3] denote the five 3-tetrahedra forming ∂T . By the
previous lemma,

4∑
l=1

∫

τl

dF ∧ δh =
∫

τ5

fdh. (4)

At this point, we notice that

(F (a + h2) − F (o))A(a − o, a + h1 − o) + (F (a) − F (o))A(a + h1 − o, a + h2 − o)+

(F (a + h1) − F (o))A(a + h2 − o, a − o)+

(F (a + h3) − F (o))A(a + h2 − o, a + h1 − o)+

(F (a + h2) − F (o))A(a + h1 − o, a + h3 − o)+

(F (a + h1) − F (o))A(a + h3 − o, a + h2 − o)+

(F (a) − F (o))A(a + h3 − o, a + h1 − o) + (F (a + h3) − F (o))A(a + h1 − o, a − o)+

(F (a + h1) − F (o))A(a − o, a + h3 − o) + (F (a + h3) − F (o))A(a − o, a + h2 − o)+

(F (a) − F (o))A(a + h2 − o, a + h3 − o) + (F (a + h2) − F (o))A(a + h3 − o, a − o) =

(F (a + h3) − F (a))A(h1, h2) + (F (a + h1) − F (a))A(h2, h3)+

(F (a + h2) − F (a))A(h3, h1).

Thus if we divide by V(h1, h2, h3) and let (h1, h2, h3) → (0, 0, 0), equation (4)
and the mean value theorem imply that F ′(a) = f(a). This holds for all a ∈ U .
That is, F is a primitive of f in U and

∫
M f(h) dh = 0.

Corollary 3.4. Let U ⊂ H be a star domain with center o. Let also f, g : U → H
be continuous in U . If f is right-holomorphic in U \{o} and g is left-holomorphic
in U \ {o}, then fdhg is integrable in U .

4 THE INTEGRAL FORMULA AND ITS CONSE-
QUENCES

The volume element of a 3-sphere can be revisited by using quaternionic differ-
ential forms. By Example 2.4, the complex function (z − c)−1 yields the (right-
and left-) holomorphic function (h − c)−1

F := −4(h − c)−1/|h − c|2 in H \ {c}.
Now, the quaternionic volume element of a 3-sphere ∂B with center c is dh =
|dh|(h− c)/|h− c|. Thus if ρ = |h− c| is the radius of this sphere, the noteworthy
3-form

dh
(h − c)−1

|h − c|2
=

1
ρ3

|dh|

on ∂B is real and gives the real volume element of the unit 3-sphere. We recall
that the total volume of ∂B is

∫
∂B |dh| = 2π2ρ3.

Revista Tumbaga 2012 | 7 | 149-159
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Theorem 4.1 (Cauchy-Fueter Integral Formula). Let f be right-holomorphic in
a domain U and let B be an open ball which together with its boundary ∂B lies
wholly in U . Then,

f(h) =
1

8π2

∫

∂B
f(η) dη (η − h)−1

F

for all h ∈ B.

Proof. Let h ∈ B be fixed and consider the differential form (f(η) + f(h)) dη
(η−h)−1

F . By Corollary 3.4, it is integrable in U . Since B lies inside a bigger ball
in U , 0 =

∫
∂B(f(η) + f(h)) dη (η − h)−1

F =
∫
∂B f(η) dη (η − h)−1

F − 8π2f(h).

Corollary 4.2. Under the assumptions of the theorem, for n ∈ Z,

1
8π2

∫

∂B
dη (η − h)n

F =
{

8π2 if n = −1
0 if n �= −1.

Additionally, the continuity of f ′ need not be assumed.

Corollary 4.3 (Fueter). The components p, q, r and s of a right holomorphic
function f : U → H, f = p + iq + jr + ks, are infinitely differentiable with respect
to t, s, y and z in U .

Due to Proposition 2.2, the maximum principle gives an analogue of Liouville’s
theorem, cf. (Deavours, 1973). However, this result can also be regarded as a
consequence of the integral formula.

Theorem 4.4 (Liouville-Fueter). If f : H → H is a right-holomorphic bounded
function, then f(h) is a constant.

Proof. By hypothesis there is a constant m such that |f(η)| ≤ m, for all η ∈ H.
Let B be an open ball of radius ρ centered at h = t + ix + jy + kz ∈ H. From
|∂(η − h)−1

F /∂t| ≤ 20/ρ4, we get

∣∣∣∂f

∂t
(h)

∣∣∣ ≤ 40m

ρ
π2.

The remaining first partial derivatives of f are similarly bounded. As ρ is arbi-
trary, f(h) is a constant.

In the proof of theorem 3.3 the only use made of the holomorphy is to show that
f is continuous and that the integral over a 4-pentahedron vanishes. Thus the
same argument produces the following helpful statement.
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Theorem 4.5. If f : U → H is a continuous function in a star domain U and∫
∂T f(h)dh = 0 for every closed 4-pentahedron lying in U , then f has a primitive

in U .

In the end, we establish the following Morera-like condition for holomorphy. This
condition is the point of departure in (Deavours, 1973).

Theorem 4.6. Let f : U → H be continuous in a domain U . If
∫
∂T f(h)dh = 0

for every closed 4-pentahedron T lying in U , then f is right-holomorphic in U .

Proof. Let a ∈ U be fixed and let ρ > 0 be so small that the ball B = {h ∈
H : |h − a| < ρ} ⊂ U . Then, B is a star domain. By the previous theorem,
there is a right-holomorphic function F such that F ′ = f in B. From (2), we
have that R(f) = −I(F ) · ∇ = −∂R(F )/∂t and I(f) = −∂I(F )/∂t = R(F )∇ +
I(F ) × ∇. By Fueter’s remark (corollary 4.3), f is is R4-differentiable and the
partial derivatives (of all orders) of its components are continuous. Furthermore,
f satisfies Cauchy-Fueter equations (1):

∂R(f)/∂t = −∂I(F )/∂t · ∇ = I(f) · ∇,

R(f)∇ = −∂R(F )∇/∂t = −∂I(f)/∂t − I(f) ×∇.

That is to say, f is right-holomorphic in U .

5 CONCLUDING REMARKS

The correct notion of integral for the construction of calculus in R, C and H
involves always a limiting process in a submanifold of codimension 1. In the
quaternion case, it is a 3-submanifold; in the complex case, it is a curve; in the
real case, a pair of points. The definition of derivative should be inherent in the
notion of differentiability. It is hard to believe the quaternionic derivative has been
so often disregarded. The distinct structure of real quaternions can be used to
establish most of the key results of the quaternion calculus, in particular, Cauchy-
Fueter theorem. No remorse should be felt when the vector space structure is
employed, since it is a part of such a structure.

Many interesting topics already examined by Fueter’s school have been left be-
hind. Power series, singularities and analytic continuation can be certainly studied
by the methods proposed here.

BIBLIOGRAPHY

Deavours, C. A. (1973). The Quaternion Calculus. Amer. Math. Monthly, 80,

Revista Tumbaga 2012 | 7 | 149-159



159

MATEMÁTICAS Y ESTADÍSTICA

995-1008.

Fueter, R. (1935). Die Funktionentheorie der Differentialgleichungen ∆u = 0 und

∆∆u = 0 mit vier reellen Variablen. Comment. Math. Helv., 7, 307-330.

Haefeli, H. G. (1947). Hyperkomplexe Differentiale. Comment. Math. Helv., 20,

382-420.

Hayek, H. & Rivera, J. G. (2010). Cálculo cuaterniónico. Ibagué, Colombia: Tra-
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