Existencia de super y sub soluciones en un modelo de acidogénesis para la producción de Biogas
Palabras clave:
Biogás, digestión anaerobia, sistema de ecuaciones diferencialesResumen
Probamos la existencia de super y sub soluciones en un sistema de ecuaciones diferenciales ordinarias no lineales, que modela la acidogénesis en la digestión anaerobia para la producción de biogás. Las super y sub soluciones son contruidas en forma analítica y se plantea su respectivo teorema de existencia de soluciones.
Descargas
Citas
Alcaraz, V., Genovesi, A., Harmand, J., González, V., Rapaport, A., and Steyer, J. P. (1999). Robust exponetial nonlinear interval observers for a class of lumped models
useful in chemical and biochemical engineering. Application to a wastewater treatment process. International Workshop on Application of Interval Analysis to Systems and Control, MISC’99, Girona, Espagne, pages 24–26.
Benyahia, B., Sari, T., Cherki, B., and Harmand, J. (2012). Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes. Journal of Process Control, 22(6):1008–1019.
Bernard, O., Sadok, Z. H., Dochain, D., Genovesi, A., and Steyer, J.-P. (2001). Dynamical model development and parameter identification for an anaerobic wastewater
treatment process. Biotechnology and Bioengineering, 75(4):424–438.
Delgado, M. and Suárez, A. (2000). Existence of solutions for elliptic systems with Hölder continuous nonlinearities. Diferential and integral equations, 13(4,6):453–477.
Franco, D., Nieto, J. J., and O’Regan, D. (2003). Upper and lower solutions for first order problems with nonlinear boundary conditions. Estracta Mathematicae, 18(2):153–160.
Jewell, W. (1987). Anaerobic sewage treatment. Environmental Science and Technology, 21(1):9–21.
Lorenzo, Y. and Obaya, M. C. (2005). La digestión anaerobia. aspectos teóricos. parte I. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 39(1):35–48.
McKenna, P.-J. and Walter, W. (1986). On the Dirichlet problem for elliptic systems. Applicable Analysis, 21:207 224.
Pao, C.-V. (1992). Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York.
Salinas, E., Muñoz, R., Sosa, J.-C., and López, B. (2013). Analysis to the solutions of Abel’s differential equations of the first kind under transformation y = u(x)z(x)+
v(x). Applied Mathematical Sciences, 7(42):2075–2092. 13
Walter, W. (1998). Ordinary differential equations. springer-Verlag, New York