Adhesion and invasion-related genes of Edwardsiella tarda ETSJ54

Noel Verjan Garcia, Carlos Iregui, Ikuo Hirono

Resumen


Edwardsiella tarda es una bacteria Gram-negativa que causa una enfermedad supurativa sistémica en peces y humanos. Recientemente, el secuenciamiento del genoma de una cepa de E. tarda altamente virulenta y resistente a múltiples antibióticos aislada en China demostró que este microorganismo posee un número de genes asociados con virulencia y sistemas secretores de toxinas que explican, en cierto grado, su capacidad de sobrevivir dentro de células fagocíticas y de infectar a diversos hospederos. Sin embargo, esta cepa de E. tarda carece de motilidad y
tiene una estructura genética codificadora del flagelo y un sistema secretor tipo IV incompletos. En este estudio, a través de un secuenciamiento genómico parcial de librerías de ADN de E. tarda ETSJ54 construidas en vectores cósmido y plásmido, se identificaron un número de genes asociados a estructuras de superficie como invasinas, pili, sistema secretor tipo IV, fimbria y otros genes relacionados con virulencia. Es de notar que la secuencia de nucleótidos de la gran mayoría de dichos genes presentó identidad con genes previamente reportados en el genoma de E. tarda EIB202; sin embargo, algunos genes no tuvieron identidad alguna con aquellos reportados para este microorganismo. Los resultados indican que E. tarda ETSJ54 posee varios elementos genéticos asociados con adhesión, invasión y colonización de tejidos de peces y diferencias en el contenido genético entre cepas de origen geográfico distinto constituye un estímulo para el desarrollo de nuevos proyectos de secuenciamiento que permitan identificar los genes asociados a este sistema secretor que aún no han sido descritos en E. tarda.

Palabras clave


Adhesins, fimbria, pathogenesis, pili/T4SS genes, virulence.

Texto completo:

PDF

Referencias


Amano, A., 2010. Bacterial adhesins to host components in periodontitis. Periodontol 2000 52, 12-37.

Ausubel, F. H., Brent, R., Kingston, E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K., 1994. Current protocols in Molecular Biology. John Wiley and Son.

Backert, S. and Meyer, T. F., 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. Current Opinion in Microbiology 9, 207-217.

Burall, L. S., Harro, J. M., Li, X., Lockatell, C. V., Himpsl, S. D., Hebel, J. R., Johnson, D. E. and Mobley, H. L., 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infection and Immunity 72, 2922-2938.

Cheng, S., Zhang, M. and Sun, L., 2010. The iron-cofactored superoxide dismutase of Edwardsiella tarda inhibits macrophagemediated innate

immune response. Fish & Shellfish Immunology 29, 972-978.

Confer, A. W. and Ayalew, S., 2013. The OmpA family of proteins: roles

in bacterial pathogenesis and immunity. Veterinary Microbiology 163, 207-222.

Dang, W., Hu, Y. H. and Sun, L., 2011. HtpG is involved in the pathogenesis of Edwardsiella tarda. Veterinary Microbiology 152, 394-400.

Ehrbar, K. and Hardt, W. D., 2005. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infection Genetics Evolution 5, 1-9.

Finlay, B. B. and Falkow, S., 1997. Common themes in microbial pathogenicity revisited. Microbiology and Molecular Biology Reviews 61, 136-169.

Foulongne, V., Bourg, G., Cazevieille, C., Michaux-Charachon, S. and O’Callaghan, D., 2000. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infection and Immunity 68, 1297-1303.

Friedlander, R. S., Vlamakis, H., Kim, P., Khan, M., Kolter, R. and Aizenberg, J., 2013. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proceeding of National Academy of Sciences U S A 110, 5624-5629.

Frost, L. S., Ippen-Ihler, K. and Skurray, R. A., 1994. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiology Reviews 58, 162-210.

Grassl, G. A., Bohn, E., Muller, Y., Buhler, O. T. and Autenrieth, I. B., 2003. Interaction of Yersinia enterocolitica with epithelial cells: invasin beyond invasion. International Journal of Medical Microbiology 293, 41-54.

Griessl, M. H., Schmid, B., Kassler, K., Braunsmann, C., Ritter, R., Barlag, B., Stierhof, Y. D., Sturm, K. U., Danzer, C., Wagner, C., Schaffer, T. E., Sticht, H., Hensel, M. and Muller, Y. A., 2013. Structural Insight into the GiantCa-Binding Adhesin SiiE: Implications for the Adhesion of Salmonella enterica to Polarized Epithelial Cells. Structure 21, 741-752.

Hirono, I., Tange, N. and Aoki, T., 1997. Iron-regulated haemolysin gene from Edwardsiella tarda. Molecular Microbiology 24, 851856.

Hou, J. H., Zhang, W. W. and Sun, L., 2009. Immunoprotective analysis of two Edwardsiella tarda antigens. Journal of General Applied Microbiology 55, 57-61.

Iregui, C. A., Guarin, M., Tibata, V. M. and Ferguson, H. W., 2012. Novel brain lesions caused by Edwardsiella tarda in a red tilapia (Oreochromis spp.). Journal of Veterinary Diagnostic Investigation 24, 446-449.

Isberg, R. R., Hamburger, Z. and Dersch, P., 2000. Signaling and invasin-promoted uptake via integrin receptors. Microbes and infection 2, 793-801.

Ishibe, K., Osatomi, K., Hara, K., Kanai, K., Yamaguchi, K. and Oda, T., 2008. Comparison of the responses of peritoneal macrophages from Japanese flounder (Paralichthys olivaceus) against high virulent and low virulent strains of Edwardsiella tarda. Fish & Shellfish Immunology 24, 243-251.

Jin, R. P., Hu, Y. H., Sun, B. G., Zhang, X. H. and Sun, L., 2012. Edwardsiella tarda sialidase: pathogenicity involvement and vaccine potential. Fish & Shellfish Immunology 33, 514-521.

Kim, S., Watarai, M., Kondo, Y., Erdenebaatar, J., Makino, S. and Shirahata, T., 2003. Isolation and characterization of miniTn5Km2 insertion mutants

of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infection and Immunity 71, 3020-3027.

Li, M. F., Hu, Y. H., Zheng, W. J., Sun, B. G., Wang, C. L. and Sun, L., 2012. Inv1: an Edwardsiella tarda invasin and a protective immunogen that is required for host infection. Fish & Shellfish Immunology 32, 586-592.

Lin, J., Huang, S. and Zhang, Q., 2002. Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes and Infection 4, 325-331.

Mathew, J. A., Tan, Y. P., Srinivasa Rao, P. S., Lim, T. M. and Leung, K. Y., 2001. Edwardsiella tarda mutants defective in siderophore production, motility, serum resistance and catalase activity. Microbiology 147, 449-457.

Miyazaki, T. and Kaige, N., 1985. Comparative histopathology of edwardsiellosis in fishes. Fish Pathology 20, 219-227.

Niemann, H. H., Schubert, W. D. and Heinz, D. W., 2004. Adhesins and invasins of pathogenic bacteria: a structural view. Microbes and infection 6, 101-112.

Okuda, J., Arikawa, Y., Takeuchi, Y., Mahmoud, M. M., Suzaki, E., Kataoka, K., Suzuki, T., Okinaka, Y. and Nakai, T., 2006. Intracellular replication of Edwardsiella tarda in murine macrophage is dependent on the type III secretion system and induces an up-regulation of anti-apoptotic NF-kappaB target genes protecting the macrophage from staurosporine-induced apoptosis. Microbial Pathogenesis 41, 226-240.

Rao, P. S., Yamada, Y., Tan, Y. P. and Leung, K. Y., 2004. Use of proteomics

to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Molecular Microbiology 53, 573-586.

Sakai, T., Kanai, K., Osatomi, K. and Yoshikoshi, K., 2003. Identification

of a 19.3-kDa protein in MRHA-positive Edwardsiella tarda: putative fimbrial major subunit. FEMS Microbiology Letters 226, 127-133.

Sambrook, J. and Russell, D. W., 2001. Molecular cloning. A Laboratory

Manual. Third edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Spencer, J. D., Hastings, M. C., Rye, A. K., English, B. K. and Ault, B. H.,

Gastroenteritis caused by Edwardsiella tarda in a pediatric renal transplant recipient. Pediatric Transplantation 12, 238-241.

Suez, J., Porwollik, S., Dagan, A., Marzel, A., Schorr, Y. I., Desai, P. T., Agmon, V., McClelland, M., Rahav, G. and Gal-Mor, O., 2013. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PLoS One 8, e58449.

Suzuki, T., Murai, T., Fukuda, I., Tobe, T., Yoshikawa, M. and Sasakawa,

C., 1994. Identification and characterization of a chromosomal virulence gene, vacJ, required for intercellular spreading of Shigella flexneri. Molecular Microbiology 11, 31-41.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. 2011. Molecular Evolutionary Genetics Analysis using Maximum 35 Parra et al. GEI en sistemas ganaderos. Likelihood, Evolutionary Distance, and Maximum arsimony

Methods. Molecular Biology and Evolution 28,2731-2739.

Tekedar, H. C., Karsi, A., Williams, M. L., Vamenta, S., Banes, M. M., Duke, M., Scheffler, B. and Lawrence, M. L., 2013. Genome sequence of the fish pathogen Edwarsiella tarda C07-087.Published only in database.

Van Soest, J. J., Stockhammer, O. W., Ordas, A., Bloemberg, G. V., Spaink, H. P. and Meijer, A. H., 2011. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda.BMC Immunology 12, 58.

Verjan, N., Hirono, I. and Aoki, T., 2005. Genetic loci of major antigenic protein genes of Edwardsiella tarda. Applied and Environmental Microbiology 71, 5654-5658.

Verjan, N., Iregui, C. A. and Hirono, I., 2012. Edwardsiellosis, common

and novel manifestations of the disease: A review. Revista Colombiana de Ciencia Animal 5, 73-82.

Verjan, N., Iregui, C.A. and Hirono, I., 2013. A random genome analysis of Edwardsiella tarda ETSJ54: annotation of putative virulence-related genes. Orinoquia 17, 74-88.

Wang, I. K., Kuo, H. L., Chen, Y. M., Lin, C. L., Chang, H. Y., Chuang, F. R. and Lee, M. H., 2005. Extraintestinal manifestations of Edwardsiella tarda infection. International Journal of Clinical Practice 59, 917-921.

Wang, Q., Yang, M., Xiao, J., Wu, H., Wang, X., Lv, Y., Xu, L., Zheng, H.,

Wang, S., Zhao, G., Liu, Q. and Zhang, Y., 2009. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches.PLoS One 4, e7646.

Wong, J. D., Miller, M. A. and Janda, J. M., 1989. Surface properties and ultrastructure of Edwardsiella species. Journal of Clinical Microbiology 27, 1797-1801.

Yu, J. E., Cho, M. Y., Kim, J. W. and Kang, H. Y., 2012. Large antibiotic resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microbial Pathogenesis 52, 259-266.

Zhang, Z., Schwartz, S., Wagner, L. and Miller, W., 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7, 203-214.

Zheng, J., Tung, S. L. and Leung, K. Y., 2005. Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infection and Immunity 73, 4127-4137.


Enlaces refback

  • No hay ningún enlace refback.