Desempeño de dos técnicas de rompimiento celular en la caracterización de ficobiliproteínas en la microalga scenedesmus sp.


  • José Jovanny Bermudez Sierra Universidad del Tolima
  • Mauricio Oliveira Leite Universidad federal de vicosa
  • Jane Selia Do reis Coimbra Universidad Federal de Vicosa
  • Marcio Aredes Martins Universidad Federal de Vicosa

Palabras clave:

homogenización, sonicación, pigmentos, ficobilinas, rompimiento celular


Las microalgas del genero Scenedesmus sp. fueron caracterizadas visualmente con respecto al rompimiento y deformación celular y a los contenidos de ficobiliproteínas (FBPs). Para la liberación de las FBPs, las células provenientes del cultivo líquido fueron sometidas a dos tipos de rompimiento mecánico (homogenización sobre alta presión y sonicación) y posteriormente deshidratadas por  liofilización. Las fotomicrografías ópticas revelaron que las células sometidas al tratamiento mecánico de homogenización sobre alta presión presentaron rompimiento celular. Para el caso de las células sometidas a sonicación no se observo dicha ruptura, ya que fueron comparadas con las muestras no tratadas mecánicamente (testigo). Las FBPs presentes en las muestras sometidas a las metodologías de rompimiento mecánico de las células y el testigo fueron cuantificadas. El contenido de FBPs de las muestras sometidas a homogenización presentó el mayor rendimiento frente aquellas tratadas por sonicación y al testigo. En adición, este tipo de rompimiento celular también proporciono la mayor recuperación de FBPs (ficocianina Fc, aloficocianina Afc y ficoeritrina Fe) dentro de los cuales la aloficocianina (Afc) fue detectada en mayor cantidad. 

Biografía del autor/a

José Jovanny Bermudez Sierra, Universidad del Tolima

BiologoMs.c Ciencia y Tecnologia de los Alimentos

Mauricio Oliveira Leite, Universidad federal de vicosa

Departamento de Tecnología de los Alimentos DTA-UFV, Universidad Federal de Viçosa, 36570-000. MG. Brasil. 

Jane Selia Do reis Coimbra, Universidad Federal de Vicosa

Departamento de Tecnología de los Alimentos DTA-UFV, Universidad Federal de Viçosa, 36570-000. MG. Brasil. 

Marcio Aredes Martins, Universidad Federal de Vicosa

Departamento de Ingeniería Agrícola DEA-UFV, Universidad Federal de Viçosa, 36570-000. MG. Brasil.


Abalde., J., 1998. Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp . 109201. Plant Science, 136, pp.109–120.

Balasundaram, B. & Pandit, a. B., 2001. Selective release of invertase by hydrodynamic cavitation. Biochemical Engineering Journal, 8(3), pp.251–256. Available at:

Batista, A.P. et al., 2006. Rheological characterization of coloured oil-in-water food emulsions with lutein and phycocyanin added to the oil and aqueous phases. Food Hydrocolloids, 20(1), pp.44–52. Available at: http://linkinghub.elsevier. com/retrieve/pii/S0268005X05000457 [Accessed June 25, 2013].

Bennett, a & Bogorad, L., 1973. Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of cell biology, 58(2), pp.419–35. Available at: centrez&rendertype=abstract.

Bermejo, R., Ruiz, E. & Acien, F.G., 2007. Recovery of B-phycoerythrin using expanded bed adsorption chromatography: Scale-up of the process. Enzyme and Microbial Technology, 40(4), pp.927–933. Available at: http://linkinghub. [Accessed May 28, 2013].

Burja, A.M. et al., 2001. Marine cyanobacteria prolific source of natural products. Tetrahedron, 57(590), pp.9347–9377.

Cardozo, K.H.M. et al., 2007. Metabolites from algae with economical impact.

Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 146(1-2), pp.60–78. Available at: pubmed/16901759 [Accessed March 21, 2014].

Furuki, T. et al., 2003. Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. Journal of Applied Phycology, (15), pp.319–324.

Godinho, L.R. et al., 2010. Criptógamos do Parque Estadual das Fontes do Ipiranga , São Pablo, Sp. Algas 30:Chlorophyceae (Família Scenedesmus). Hoehnea,

(3), pp.513–553.

Halim, R. et al., 2012. Microalgal cell disruption for biofuel development. Applied Energy, 91(1), pp.116–121. Available at: retrieve/pii/S0306261911005587 [Accessed June 4, 2013].

Jespersen, L. et al., 2004. Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3-4), pp.261–266. Available at: 004-1062-7 [Accessed June 25, 2013].

Kobylewski, S. & Jacobson, M.F., 2010. Food Dyes A Rainbow of Risks, Washington, DC. Available at:

Lee, A.K., Lewis, D.M. & Ashman, P.J., 2012. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, pp.89–101. Available at: http://linkinghub.elsevier. com/retrieve/pii/S0961953412002760 [Accessed June 18, 2013].

Mishra, S.K., Shrivastav, A. & Mishra, S., 2008. Effect of preservatives for food grade C-PC from Spirulina platensis. Process Biochemistry, 43(4), pp.339–345. Available at: pii/S1359511307003455 [Accessed July 4, 2013].

Moraes, C.C., De Medeiros Burkert, J.F. & Kalil, S.J., 2010. C-Phycocyanin Extraction Process for Large-Scale Use. Journal of Food Biochemistry, 34(53), pp.133–148. Available at:

[Accessed June 24, 2013].

Mostafa, S.S.M., 2012. Microalgal Biotechnology : Prospects and Applications.

In INTECH, ed. Plant Science. Giza, Egypt., p. 40. Available at: http://cdn. and_applications.pdf.

Oliveira, E.G. et al., 2010. Optimisation of Spirulina platensis convective drying: evaluation of phycocyanin loss and lipid oxidation. International Journal of Food Science & Technology, 45(8), pp.1572–1578. Available at: http://doi. [Accessed July 9, 2013].

Patil, G. et al., 2008. Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresource technology, 99(15), pp.7393–6. Available at: [Accessed June 20, 2013].

Patil, G. et al., 2006. Method to obtain C-phycocyanin of high purity. Journal of chromatography. A, 1127(1-2), pp.76–81. Available at: http://www.ncbi.nlm. [Accessed May 29, 2013].

Patil, G. & Raghavarao, K.S.M.S., 2007. Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), pp.156–164. Available at: [Accessed July 4, 2013].

Plaza, M., Cifuentes, A. & Ibáñez, E., 2008. In the search of new functional food ingredients from algae. Trends in Food Science & Technology, 19(1), pp.31–39. Available at: [Accessed March 24, 2014].

Puglisi, M.P. et al., 2004. Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron, 60(33), pp.7035–7039. Available at: http://linkinghub. [Accessed March 24, 2014].

Raposo, M.F.J. et al., 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis : effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology, 13, pp.19–24.

Safi, C. et al., 2014. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3, pp.61–65. Available at: [Accessed May 1, 2014].

SAS®, 2002. Statistical Analysis System. , p.15.

Sekar, S. & Chandramohan, M., 2007. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. Journal of Applied Phycology, 20(2), pp.113–136. Available at: [Accessed April 4, 2014].

Silveira, S.T. et al., 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource technology, 98(8), pp.1629–34. Available at: [Accessed June 24, 2013].

Simis, S.G.H. & Kauko, H.M., 2012. In vivo mass-specific absorption spectra of phycobilipigments through selective bleaching. American Society of Limnology and Oceanography, 1(2), pp.214–226.

Song, W., Zhao, C. & Wang, S., 2013. A Large-Scale Preparation Method of High

Purity. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4).

Su, H.-N. et al., 2009. Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis. Journal of Applied Phycology, 22(1), pp.65–70. Available at: [Accessed July 4, 2013].

Tomitani, A. et al., 1999. Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature, 400(6740), pp.159–62. Available at:

Viskari, P.J. & Colyer, C.L., 2003. Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Analytical Biochemistry, 319(2), pp.263–271. Available at: [Accessed June 20, 2013].

Viswanathan, T. et al., 2012. Effect of cell rupturing methods on the drying

characteristics and lipid compositions of microalgae. Bioresource technology,

, pp.131–6. Available at: [Accessed May 22, 2013].

Wiltshire, K.H. et al., 2000. Extraction of pigments and fatty acids from the green alga

Scenedesmus obliquus ( Chlorophyceae ). Aquatic Ecology, 34, pp.119–126.

Zhang, Y. & Chen, F., 1999. A simple method for efficient separation and purification

of c-phycocyanin and allophycocyanin from Spirulina platensis. , pp.601–603.

Zheng, H. et al., 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied biochemistry and biotechnology, 164(7), pp.1215–24. Available at: pubmed/21347653 [Accessed June 4, 2013].





Ciencias - Quimicas