EFECTO ANTIMICROBIANO DEL QUITOSANO: UNA REVISIÓN DE LA LITERATURA

German Ayala Valencia

Resumen


A través del tiempo, diferentes estudios han evaluado el efecto antimicrobiano de diversos materiales de origen biológico; entre estos, el quitosano ha tomado gran importancia al ser un polímero natural, biodegradable, no tóxico en concentraciones moderadas y que posee actividad antimicrobiana. El efecto antimicrobiano del quitosano se atribuye a la capacidad quelante y a la presencia de un grupo amino con carga positiva que puede interactuar con los compuestos de carga opuesta y que están presentes en la superficie de los microorganismos. Sin embargo, en la literatura se reportan resultados contradictorios respecto a la actividad antimicrobiana del quitosano, indicando la existencia de factores intrínsecos y extrínsecos los cuales podrían modificar dicha actividad antimicrobiana. Este trabajo presenta una revisión de la literatura sobre las propiedades antimicrobianas del quitosano así como los mecanismos de acción de este biopolímero sobre los hongos y bacterias. Finalmente se reportan algunas perspectivas sobre el uso del quitosano acoplado con nanopartículas metálicas y cómo estos sistemas podrían tener un mayor efecto inhibitorio contra los microorganismos.


Palabras clave


conservantes, biopolímeros, actividad antimicrobiana, nanopartículas, industria de alimentos

Texto completo:

PDF

Referencias


Milk Facts (2012). http://milkfacts.info/Milk%20Microbiology/Disease%20Outbreaks.htm/[Consulta: Oct 2013].

World health Organization Europe. (2013). http://www.euro.who.int/en/what-we-do/health-topics/communicable-diseases/outbreaks-of-e.-coli-o104h4-infection/ [Consulta: Oct 2013].

Badui, D.S. (2006). Química de los Alimentos, 4 edn., (Pearson, México).

Jamab, M.S.; Niazmand, R. (2009). Effect of essential oil of Mentha piperita and Ziziphora clinopodioides on Lactobacillus acidopilus activity as bioyogurt starter culture. American-Eurasian J. Agric. & Environ. Sciences. 6, 129-131.

Lemay, M.J.; Choquette, J.; Delaquis, P.J.; Claude, G.; Rodrigue, N.; Saucier, L. (2002). Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. International Journal of Food Mycrobilogy. 78, 217-226.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology. 94, 223-253.

Fai, A.E.C.; Stamford, T.C.M.; Stamford, T.L.M. (2008). Potencial biotecnológico de quitosana em sistemas de conservação de alimentos. Revista Iberoamericana de Polímeros, 9(5), 435-451.

Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144, 51-63.

Hafdani, F.N.; Sadeghinia, N. (2011). A review on application of chitosan as a natural antimicrobial.World Academy of Science and Technology. 50, 252-256.

Duarte, E.R.; Verbel, J.O.; Jaramillo, B.E. (2009). Remoción de cromo de aguas residuales de curtiembres usando quitosan obtenido de desechos de camaron. Scientia et Technica. 42, 290-295.

Pájaro, Y.; Díaz, F. (2012). Remoción de cromo hexavalente de aguas contaminadas usando quitosana obtenido de exoesqueleto de camarón. Revista Colombiana de Química. 4, 283-298.

Allan, C.R.; Hardwiger, L.A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology. 3, 285–287.

Chen, Y.L.; Chou, C.C. (2005). Factors affecting the susceptibility of Staphylococcus aureus CCRC 12657 to water soluble lactose chitosan derivative. Food Microbiology. 22, 29–35.

Choi, B.K.; Kim, K.Y.; Yoo, Y.J.; Oh, S.J.; Choi, J.H.; Kim, C.Y. (2001). In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents. 18, 553–557.

Chung, Y.C.; Wang, H.L.; Chen, Y.M.; Li, S.L. (2003). Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technology. 88, 179–184.

Fernandes, J.C.; Tavaria, F.K.; Soares, J.C.; Ramos, O.S.; João Monteiro, M.; Pintado, M.E.; Xavier Malcata, F. (2008). Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology. 25, 922–928.

Helander, I.M.; Wright, A.V.; Mattila-Sandholm, T.M. (1997). Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria.Trends in Food Science and Technology. 8, 146–150.

Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food Microbiology. 71, 235–244.

Hernandez-Lauzardo, A.N.; Bautista-Banos, S.; Velazquez-del Valle, M.G.; Mendez-Montealvo, M.G.; Sanchez-Rivera, M.M.; Bello-Perez, L.A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers. 73, 541–547.

Chen, C.S.; Liau, W.Y.; Tsai, G.J. (1998). Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. Journal of Food Protection. 61, 1124–1128.

Shahidi F.; Arachchi, J.K.V.; Jeon, Y.L. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology. 10, 37-51.

Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 4, 1457–1465.

Cuero, R.G.; Osuji, G.; Washington, A. (1991). N-carboxymethylchitosan inhibition of aflatoxin production: role of zink. Biotechnology Letters. 13, 441-444.

Sudarshan, N.R.; Hoover, D.G.; Knorr, D. (1992). Antibacterial Action of Chitosan Food Biotechnology. 6, 257-272.

Jeon, Y.J.; Park, P.J.; Kim, S. K. (2001). Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers. 44, 71-76.

No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. (2002). Antibacterial activity of Chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology. 74, 65-72.

Chung, Y.C.; Su, Y.P.; Chen, C.C.; Jia, G.; Wang, H.L.; Wu, J.C.G.; Lin, J.G. (2004), Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Parmacologica Sinica. 25, 932-936.

Zhong, Z.; Xing, R.; Liu, S.; Wang, L.; Cai, S.; Li, P. (2008). Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydate Research. 343, 566-570.

Chung Y.C.; Chen C.Y. (2008). Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technology. 99, 2806-2814.

Kim, K.W.; Min, B.J.; Kim, Y.T.; Kimmel, R.M.; Cooksey, K.; Park, S.I. (2011). Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. LWT-Food Science and Technology. 44, 565-569.

Valencia, G.A.; Vercik, L.C.O.; Ferrari, R.; Vercik, A. (2013). Synthesis and characterization of silver nanoparticles using water-soluble starch and its antibacterial activity on Staphylococcus aureus. Starch/Stärke. 11-12, 931-937.

Tsai, G.J.; Su, W.H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. Journal of Food Protection. 62, 239-243.

Yang, T.C.; Li, C.F.; Chou, C.C. (2007). Cell age, suspending medium and metal ion influence the susceptibility of Escherichia coli O157:H7 to water-soluble maltose chitosan derivative. International Journal of Food Microbiology. 113, 258-262.

Mohammed, A. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT-Food Science and Technology. 43, 837-842.

Tokura, S.; Ueno, K.; Miyazaki, S.; Nishi, N. (1997). Molecular weight dependent antimicrobial activity by chitosan. Macromolecular Symposia. 1997, 120, 1-9.

Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry. 114, 1173-1182.

Valencia, G.A. (2013). Transporte electrônico em biofilms nanoestruturados para biossensores a base de enzimas. Tesís de Maestria presentada a la Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos.

Kong, M.; Chen, X.G.; Liu, C.S.; Yu, L.J.; Ji, Q.X.; Xue, Y.P.; Cha, D.S.; Park, H.J. (2008). Preparation and antibacterial activity of chitosan microspheres in a solid dispersing System. Frontiers of Materials Science in China. 2, 214-220.

Takahashi, T.; Imai, M.; Suzuki, I.; Sawai, J. (2008). Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree. Biochemical Engineering Journal. 40, 485-491.

Rhoades, J.; Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Enviromental Microbiology. 66, 80-84.

Chung, Y.C.; Kuo, C.L.; Chen, C.C. (2005). Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technology. 96, 1473-1482.

Xie, Y.J.; Liu, X.F.; Chen, Q. (2007). Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydrate Polymers. 69, 142-147.

Cavalcante, A.E.F.; Montenegro, T.C.S.; Montenegro, T.L.S. (2008). Revista Iberoamericana de Polimeros. 9, 435-451.

Kubota, N.; KiKuchi, Y. (1998). Macromolecular complexes of chitosan. In S. Dumitriu (Ed.), Polysacharides: Structural diversity and functional versatility New York, USA: Marcel Dekker Inc., 595-628.

Wang, X.H.; Du, Y.M.; Liu, H. (2004). Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers. 56, 21-26.

Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology. 74, 2171-2178.

An, J.; Luo, Q.; Yuan, X.; Wang, D.; Li, X. (2011). Preparation and characterization of silver-chitosan nanocomposite particles with antimicrobial activity. Journal of Applied Polymer Science. 120, 3180-3189.

Higazy, A.; Hashem, M.; ElShafei, A.; Shaker, N.; Hady, M.A. (2010). Development of antimicrobial jute packaging using chitosan and chitosan–metal complex. Carbohydrate Polymers. 79, 867-874.

Ghaouth, A.E.; Arul, J.; Ponnampalam, R.; Boulet, M (1991). Chitosan coating effect on storability and quality of fresh strawberries. Journal of Food Science. 56(6), 1618-1620


Enlaces refback

  • No hay ningún enlace refback.