The Right Setting of the Quaternion Calculus


  • Leonardo Solanilla-Chavarro Universidad del Tolima

Palabras clave:

Quaternion and other division algebras, exterior differential systems, harmonic functions.


Quaternionic analysis, it is usual to persist in pointing out to their distinguishedcharacteristics. It is our aim in this paper, by contrast, to set forth anatural (i.e. canonical) and rather comprehensive account of the quaternioncalculus. Accordingly, we show that a proper notion of quaternionic derivativeleads to the fundamental integral theorem which generalizes straightforwardlythe better-known complex and real cases.

Biografía del autor/a

Leonardo Solanilla-Chavarro, Universidad del Tolima

Departamento de Matematicas y Estadıstica, Universidad del Tolima (Ibagu´e-Colombia).Miembro del Grupo de Matematicas del Tolima (Grupo-MaT).


Deavours, C. A. (1973). The Quaternion Calculus. Amer. Math. Monthly, 80, 995-1008.

Fueter, R. (1935). Die Funktionentheorie der Differentialgleichungen ∆u = 0 und ∆∆u = 0 mit vier reellen Variablen. Comment. Math. Helv., 7, 307-330.

Haefeli, H. G. (1947). Hyperkomplexe Differentiale. Comment. Math. Helv., 20, 382-420.

Hayek, H. & Rivera, J. G. (2010). C´alculo cuaternionico. Ibague, Colombia: Trabajo de Grado en el Programa de Matematicas con ´enfasis en Estadıstica,Facultad de Ciencias, Universidad del Tolima.

Levinson, N. & Redheffer, R. M. (1970). Complex Variables. San Francisco, USA: Holden-Day.

Remmert, R. (1991). Theory of Complex Functions. New York, USA: Springer.

Sudbery, A. (1979). Quaternionic Analysis. Math. Proc. Camb. Phil. Soc., 85,






Artículos de Investigación